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Bazley’s special choice operator is a lesser operator to a positive perturbation of
a self-adjoint semi-bounded operator that possesses an exactly soluble base eigenva-
lue problem. It allows the construction of an exactly soluble intermediate problem that
gives eigenvalues not less than the base problem and not greater than the perturbed
problem so that lower bounds to the eigenvalues of the perturbed operator are produ-
ced. This paper considers alternate derivations of Bazley’s special choice which lead to
two alternate methods to determine eigenvalue lower bounds. One is simpler, but gives
poorer bounds; the other is more difficult, but sometimes yields superior bounds. Lower
bounds to the particle in a box model with a linear perturbation and lower bounds to
the helium atom are calculated using the two methods introduced and are compared to
those given with Bazley’s special choice.
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1. Introduction

Although the variational theorem allows for a straightforward and practical
method to determine upper bounds to the eigenvalues of the quantum mecha-
nical Hamiltonian operator, a practical method for corresponding lower bounds
has proved elusive. A variety of methods are available for one-dimensional sys-
tems, but application to the many-body (each with three dimensions) electronic
chemical systems has been restricted to a handful of methods, none of which
have proved successful in general. The simplest methods, related to the Temple
formula, have been successfully applied to the helium [1] and lithium atoms [2,
3], but the difficulty of calculating expectation values of the square Hamiltonian
and some theoretical issues for many-electron atoms has prevented application
to larger systems. The effective field method is easily applied to very large sys-
tems, but the resulting lower bounds are poor [4–6]. The method of interme-
diate problems proved useful for the helium atom [7], but was inadequate for
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the lithium atom [8, 9] until supplemented with the effective field method [10].
The local energy method has been applied to the helium atom, and although
it avoids difficult integrals, it has its own problems [11]. Attempts to determine
energy lower bounds for molecules have been less successful [12].

Consider a [base] self-adjoint operator Ao whose [base] eigenvalue equa-
tion Aoψon = λonψ

o
n is exactly soluble. In many situations one wishes to solve

a related eigenvalue equation Aψn = λnψn where A = Ao + V so that V is
a perturbation. If V is positive then a variety of related methods to determine
lower bounds to λn are available which utilize the base problem. One method is
Bazley’s special choice [7] in which the perturbation V is replaced by the lesser
operator LB :

LB ≡ PB[V −1]−1PB ≤ V, (1)

where PB is a projection operator onto the N-dimensional subspace, SB , span-
ned by the eigenfunctions ψo1 , . . . , ψ

o
N of Ao and [V −1] is the matrix represen-

tation of V −1 on SB . The form of LB given in (1) is practical; however, Bazley
defines LB as VQ where Q is the (non-orthogonal) projection operator onto the
subspace V −1SB which is a form more suitable for discussing the favorable pro-
perties of LB . Except for Q, all projection operators in this work are orthogo-
nal. Both SB and S⊥

B (the complement subspace of SB) are reducing subspaces
for LB : LB takes the form of [V −1]−1 on SB , while on S⊥

B the operator LB is
zero. SB and S⊥

B are also reducing subspaces for Ao so that the eigenvalues of
the operator Ao + LB are λo

N+1, λ
o
N+2, . . . and the N eigenvalues of [Ao + LB ].

(Note that the former set of eigenvalues are unchanged from the base problem
so that they are called persistent eigenvalues.) Thus only an N ×N matrix eigen-
value problem needs to be solved to determine lower bounds to each λn, and this
is the advantage of using LB over V .

Bazley’s proof of (1) by defining a new inner product is well-known [7]. His
proof illustrates that the operator LB is not only less than V , but has two impor-
tant properties: (1) it is non-negative; (2) as N increases, LB does not decrease.
The former property means that the resulting lower bounds are not worse than
λon (which themselves serve as lower bounds due to the positive nature of V ). The
latter property guarantees that the lower bounds are not worsened as more effort
is expended (from working with larger matrices). Nevertheless, the fundamental
property of (1), that LB ≤ V is easy to prove in a variety of ways – some of
which yield new lesser operators to V . In this paper, some alternate derivations
of (1) are explored which lead us to new lesser operators.

At this point we emphasize that although the application of (1) by Bazley
was very restricted, i.e., coupled to an exactly soluble base problem through the
projection operator PB , the result is valid for a general projection operator P
onto a general subspace S.
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2. Existing alternate derivations

After the introduction of (1), Bazley and Fox [13] discovered that the same
lower bounds to λn resulted from the use Ao with the lesser operator LBF to V
where LBF ≡ V 1/2PBFV

1/2 and PBF is the projection operator onto the sub-
space generated by V −1/2SB . The equivalence of the lower bounds lead to the
realization that the operators LBF and LB were the same. Consider the general
inequality below for a projection operator P and positive operator X.

X1/2(1 − P)X1/2 ≥ 0. (2)

LBF results from (2) when P = PBF and X = V .
Bazley’s special choice can also be derived from the general comparison

operator Y ≡ W − (I − R)X(I − R) where W ≤ A, X ≥ 0, and R is a finite
rank operator (such as, but not limited to, a projection operator) [14]. Note that
Y ≤ W ≤ A so that Y is a lesser operator to A as desired and the eigenvalues
of Y serve as lower bounds to the eigenvalues of A. This comparison operator
Y simplifies to Y = W −X+XR [14]. Letting W = A and X = V one arrives at

A ≥ Y = Ao + VR, (3)

which gives (1) when R = Q so that VQ = PB[V −1]−1PB .
Miller [15] derived (1) from a general theorem originating from the work

of Ref. [16] which he used to also derive a number of other results pertaining
to lower bound calculations. The theorem states that given a self-adjoint opera-
tor X with matrix representation [X], both of which have N eigenvalues below a
number α which is not in the spectrum of X, then

(X − α)−1 ≥ PX[X − α]−1PX, (4)

where PX is a projection operator onto the subspace used to generate the matrix
[X]. Bazley’s special choice bound (1) is regained with positive X = V −1 so that
α = 0 for any subspace used to form the matrix [X]. Miller remarks that with
X > 0 and α = 0, (4) is equivalent to the Schwarz inequality. We consider the
Schwarz inequality below for a general function f and projection operator P :

|〈f |Pf 〉|2 =
∣
∣
∣

〈

fV 1/2|V −1/2Pf
〉∣
∣
∣

2 ≤ 〈f |V |f 〉
〈

f |PV −1P |f
〉

(5)

for V > 0 which rearranges to give a lower bound to 〈f |V |f 〉 from which an
operator less than V can be determined and (1) is regained.

If (1) is altered with a positive coefficient c so that cB replaces B then the
poorer result V ≥ cB for 0 < c < 1 is obvious. Nevertheless, Wilson [17] has
shown in a different setting, that use of cB with c > 1 can be used to give
rigorous lower bounds to the eigenvalues λn (not a lower bound to the opera-
tor V ) that substantially improves those obtained with c = 1 in the special choice
method.
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3. Another derivation

A simple proof of (1) is the following. Consider a general finite-dimensional
subspace S and its complement S⊥ with projection operators P onto the for-
mer and P⊥ onto the latter. We non-rigorously define χ−1 = PX−1P +
P⊥∞P⊥ where operator X > 0. If a function φ has any component in S⊥ then
〈φ|χ−1|φ〉 = ∞ > 〈φ|X−1|φ〉 while if φ ∈ S, then 〈φ|χ−1|φ〉 = 〈φ|X−1|φ〉. It
follows that 0 < X−1 ≤ χ−1 ≤ ∞ and by inversion that ∞ > X ≥ χ ≥ 0
where χ = P [X−1]−1P . Bazley’s inequality (1) is thus proved for positive opera-
tors X = V .

If we instead let X = V + c, with real number c > 0 and V > 0, then one
can define the lesser operator Lc such that

Lc ≡ P
(

[(V + c)−1]−1 − c
)

P − P⊥cP⊥ ≤ V (6)

and (1) is a special case of (6) for which c = 0. When the subspaces and pro-
jection operators are defined as in the introduction, the component P⊥cP⊥ of
Lc lowers the already existing lower bounds λo

N+1, λ
o
N+2, . . . to the eigenvalues

λN+1, λN+2, . . . of A each by c. The other component of Lc, however, raises the
lower bounds given by the N × N matrix eigenvalue problem. The cost for this
improvement is the more difficult construction of the matrix operator [(V +c)−1]
due to more difficult integrations. Bazley and Fox described this method (proved
again by defining a new inner product) [18]. Miller derived a more general lower
bound approach which gives this method as a special (inferior) case [19].

Consider next that X = V +f + c, with real number c > 0 such that X > 0
although operator f may not be positive. Then one can derive the lesser opera-
tor Lf

Lf ≡ P
(

[(V + f + c)−1]−1
)

P − (f + c) ≤ V. (7)

If the positive projection onto S of (7) is completely ignored the worse lesser
operator −(f + c) is formed. This simpler bound is more quickly determined
from the positive nature of X = V +f + c > 0 and is the essence of the effective
field method [4]. Practical use of (7) has not yet been achieved.

4. Bazley’s special choice without inversion

A proof without infinities results from the positive nature of X−1 > 0 so
that

(X − C)∗X−1(X − C) ≥ 0, (8)

where C is a general linear operator. This expression is similar to that used in
defining general comparison operators of [14] mentioned in section 2. Letting
X = V , the inequality expands to give

L′ ≡ C + C∗ − C∗V −1C ≤ V. (9)
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Table 1
Lower bounds to the first six eigenvalues of the one-dimensional linearly perturbed particle in a
box model calculated with L′′ and LB (in parentheses) in place of the perturbation V = x. Upper
bounds were obtained from a variational calculation using the first 20 eigenfunctions of the unper-

turbed system. Bounds in italics are the best for a given eigenvalue using L′′. Units are hartree.

N λ1 λ2 λ3 λ4 λ5 λ6

1 1.72706
(1.78878)

2 1.79887
(1.82377)

3.37258
(3.47043)

3 1.85687
(1.86186)

3.57408
(3.59124)

5.73535
(5.88345)

4 1.86776
(1.86888)

3.60907
(3.61358)

6.06968
(6.08405)

9.13608
(9.32488)

5 1.86971
(1.87021)

3.61847
(3.61929)

6.09519
(6.10038)

9.55980
(9.57278)

13.5675
(13.7893)

6 1.87054
(1.87074)

3.61950
(3.62007)

6.10550
(6.10635)

9.57998
(9.58581)

14.0545
(14.0668)

19.0162
(19.2658)

Upper bound 1.87113 3.62101 6.10822 9.59403 14.0862 19.5817

Letting C = LB = P [V −1]−1P gives Bazley’s special choice (1). This derivation
immediately generalizes Bazley’s special choice by allowing a variety of other
operators lesser than V by the choice of C; however, we believe the choice C =
LB to be optimal, for only in this case is L′ guaranteed to be non-negative. Care-
ful choices of C keep one from calculating the inverse matrix [V −1]−1, which
is difficult for large matrices, but one then discards the optimal nature of the
bound. A good compromise is C = P [V ]P since as S increases one might expect
P [V ]P and P [V −1]−1P to become more similar, e.g., when S is the entire Hil-
bert space, then P = I so that P [V ]P = V and P [V −1]−1P = V . This choice of
C gives

L′′ ≡ 2P [V ]P − P [V ][V −1][V ]P ≤ V, (10)

which can, but is not guaranteed to, give lower bounds very close to those obtai-
ned with LB . The quality of the lower bounds given by L′′ is judged by how
close they are to those obtained with LB , as our choice of C is now non-optimal.

As a first example we consider the operator A=Ao + V with Ao =
−1/2 d2/dx2 on a domain of x ∈ [0, π ] and V = x using the N-dimensional sub-
space SB spanned by the eigenfunctions ψon = (2/π)1/2 sin (nx) of Ao for n = 1
to N . The lower bounds using L′′ and LB (in parentheses) are reported in table
1; the latter bounds are superior as expected, but not by much. The best lower
bound given for a particular eigenvalue using L′′ is reported in italics. For this
example, lower bounds from L′′ increase with N , which is very desirable.

For a second example we consider the S states of the non-relativistic helium
atom Hamiltonian operator A = Ao + V where V is the electron–electron
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Table 2
Lower bounds to the first six eigenvalues of the helium atom calculated with L′′ and LB (in paren-
theses) in place of the perturbation V = 1/r12. Bounds in italics are the best for a given eigenvalue

using L′′. Bounds underlined are persistent eigenvalues of the base problem. Units are hartree.

N λ1 λ2 λ3 λ4 λ5 λ6

1 −3.20898
(−3.08571)

2 −3.20479
(−3.06787)

−2.23114
(−2.15533)

3 −3.21223
(−3.06373)

−2.22227
(−2.16554)

−2.10101
(−2.12500)

4 −3.21925
(−3.06210)

−2.22462
(−2.16539)

−2.09278
(−2.08000)

−2.08000
(−2.06649)

5 −3.22498
(−3.06128)

−2.22782
(−2.16526)

−2.09293
(−2.06652)

−2.05556
(−2.05556)

−2.04914
(−2.04082)

6 −3.22959
(−3.06082)

−2.23084
(−2.16517)

−2.09366
(−2.06652)

−2.09366
(−2.04937)

−2.04937
(−2.04082)

−2.04082
(−2.03569)

Upper −2.9037 −2.1460 −2.0613 −2.0336 −2.0212 −2.0146
bound [7]

repulsion potential (1/r12) and Ao is the difference (for which exact eigenvalues
and eigenfunctions are available). The N-dimensional subspace SB is spanned by
the symmetrical combinations (1/2)1/2[φ1(r1)φn(r2)+φn(r1)φ1(r2)] of hydrogenic
functions φn for n = 1 to N . Lower bounds using L′′ and LB (in parentheses)
are reported in table 2; the latter bounds are superior. Persistent eigenvalues from
the base problem are underlined and the best lower bound using L′′ is reported
in italics. For this example the lower bounds given by L′′ do not increase with
N – instead they tend to decrease.

Further improvement of this method could be achieved by letting C=
cP [V ]P where c is an adjustable parameter; but one must then run a series of
lower bound calculations to optimize the bounds with respect to c. This would,
however, allow the bounds to approach those obtained with (1).

5. Exponential special choice

Attempts to create a lesser operator to V using the exponential function
and (8) with X = eV and X = eV − 1 were not successful. Nontrivial lower
bounds did sometimes result, but for the systems studied bounds were poor
and/or did not improve with increasing effort. A more successful route using the
exponential function is discussed below, although there is very little resemblance
to Bazley’s special choice method.

Given a finite-dimensional space S, let R be the subspace defined by e−V S∩
S⊥ and let T be the complement space of R⊕ S. Then the representation of the
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operator e−V takes the following form:

e−V =
⎡

⎣

PSe−V PS PSe−V PR PSe−V PT
PRe−V PS PRe−V PR PRe−V PT
PT e−V PS PT e−V PR PT e−V PT

⎤

⎦ =
⎡

⎣

α β γ

β∗ δ ε

γ ∗ ε∗ χ

⎤

⎦ , (11)

where γ = 0 by construction since for any s ∈ S and t ∈ T we have 〈s|e−V |t〉 =
〈e−V s|t〉 = 0 since e−V s ∈ R ⊕ S which is orthogonal to T . Construction of a
lesser operator to V proceeds as follows where e−V ≤ I as we restrict V ≥ 0.

e−V=
⎡

⎣

α β 0
β∗ 0 0
0 0 0

⎤

⎦ +
⎡

⎣

0 0 0
0 δ ε

0 ε∗ χ

⎤

⎦≤
⎡

⎣

α β 0
β∗ 0 0
0 0 0

⎤

⎦+
⎡

⎣

0 0 0
0 1 0
0 0 1

⎤

⎦=
⎡

⎣

α β 0
β∗ 1 0
0 0 1

⎤

⎦.

(12)

The logarithm is operator monotone [20] so that the inequality in (12) is retained
when one takes the logarithm of both sides. Then negate (12) to obtain (13)

LE =
⎡

⎣
−ln

[

α

β∗
β

1

]

0
0

0 0 0

⎤

⎦ ≤ V. (13)

Matrix α is straightforward to construct. Given an orthonormal basis set
s1, s2, . . . , sN for an N-dimensional space S the matrix elements of α are
merely αij = 〈

si |e−V |sj
〉

for i, j = 1, 2, . . . , N . Matrix β requires more
work. The domain of β is the subspace R ≡ e−V S ∩ S⊥. Combining
the orthonormal set s1, s2, . . . , sN with the non-orthogonal and unnormalized
set e−V s1, e−V s2, . . . , e−V sN, the Gram–Schmidt orgthonormalization process
returns the unchanged set s1, s2, . . . , sN which spans S but also a set of M addi-
tional orthonormal functions g1, . . . , gM which span R where M ≤ N . The
β matrix elements are then βij = 〈

si |e−V |gj
〉

for i = 1, 2, . . ., N and j =
1, 2, . . .,M.

Sample calculations with S = SB for the linearly perturbed particle in a box
(table 3) and the helium atom (table 4) show that given the same information
from the base problem, bounds superior to Bazley’s special choice can be obtai-
ned, but are not guaranteed. Unfortunately, even with the same information this
method requires a matrix twice the size used with Bazley’s special choice. Fur-
thermore, the examples studied suggest that competitive bounds for λn are obtai-
ned only when n+1 base problem eigenfunctions are used, instead of just n base
problem eigenfunctions for Bazley’s special choice.

If e−V in (11) is replaced with the more general e−cV where c is a constant
then (13) is modified to

LE = 1
c

⎡

⎣
−ln

[

α′
β ′∗

β ′
1

]

0
0

0 0 0

⎤

⎦ ≤ V (14)
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Table 3
Lower bounds to the first six eigenvalues of the one-dimensional linearly perturbed particle in a
box model calculated with LE and LB (in parentheses) in place of the perturbation V = x. Upper
bounds were obtained from a variational calculation using the first 20 eigenfunctions of the unper-
turbed system. Bounds in italics for a given eigenvalue using LE are those which are superior to

calculation with LB . Units are hartree.

N λ1 λ2 λ3 λ4 λ5 λ6

1 0.47466
(1.78878)

2 1.79213
(1.82377)

1.99967
(3.47043)

3 1.87007
(1.86186)

3.61003
(3.59124)

4.49181
(5.88345)

4 1.87101
(1.86888)

3.62014
(3.61358)

6.10265
(6.08405)

7.98206
(9.32488)

5 1.87108
(1.87021)

3.62087
(3.61929)

6.10716
(6.10038)

9.58936
(9.57278)

12.4783
(13.7893)

6 1.87111
(1.87074)

3.62093
(3.62007)

6.10800
(6.10635)

9.59283
(9.58581)

14.0817
(14.0668)

17.9763
(19.2658)

Upper bound 1.87113 3.62101 6.10822 9.59403 14.0862 19.5817

Table 4
Lower bounds to the first six eigenvalues of the helium atom calculated with LE and LB (in paren-
theses) in place of the perturbation V = 1/r12. Bounds in italics for a given eigenvalue using LE
are those which are superior to calculation with LB . Bounds underlined are persistent eigenvalues

of the base problem. Units are hartree.

N λ1 λ2 λ3 λ4 λ5 λ6

1 −3.05661
(−3.08571)

2 −3.01655
(−3.06787)

−2.32965
(−2.22222)

3 −3.00908
(−3.06373)

−2.25811
(−2.16554)

−2.15435
(−2.12500)

4 −3.00623
(−3.06210)

−2.22992
(−2.16539)

−2.13113
(−2.08000)

−2.08781
(−2.06649)

5 −3.00481
(−3.06128)

−2.21685
(−2.16526)

−2.12081
(−2.06652)

−2.07317
(−2.05556)

−2.05740
(−2.04082)

6 −3.00400
(−3.06082)

−2.20988
(−2.16517)

−2.11498
(−2.06652)

−2.06658
(−2.04937)

−2.04710
(−2.04082)

−2.04123
(−2.03569)

Upper bound [7] −2.9037 −2.1460 −2.0613 −2.0336 −2.0212 −2.0146
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(where α′ and β ′ are matrix elements of e−cV ) in a manner similar to (6)
although there are notable differences. In (6) c > 0 was added to V . Addition
produces no change in the current method and so we multiply by the factor c;
coincidentally, multiplication by c produces no change in method of section 3.
In the present case c deviates from one in either direction and is not guaranteed
to give better bounds; whereas in (6) the parameter c was increased from zero
and did not give inferior bounds. Furthermore, there is no effect of c on the per-
sistent eigenvalues of the base problem in the present method, while for (6) those
eigenvalues were lowered. Calculations with (14) on both the perturbed particle
in a box and the helium atom showed some improvement for optimal values of
c, but not enough to detail here. It is worth noting, however, that the optimal c
varied for both different-sized calculations and for different eigenvalues.

6. Conclusion

We have presented two new methods to obtain lower bounds to eigenva-
lues of a self-adjoint operator related by a positive perturbation of a base self-
adjoint operator with an exactly-soluble eigenvalue equation. The first is a simple
modification of Bazley’s special choice which constructs a lesser operator to the
positive perturbation V of the form 2P [V ]P − P [V ][V −1][V ]P where P is a
projection operator onto the subspace used to construct the matrix representa-
tions [V ] of V and [V −1] of V −1. This uses no information that is not used
in Bazley’s special choice or a variational (upper bound) calculation and avoids
inverting [V −1] which is necessary for Bazley’s special choice and thus we recom-
mend this new approach to be tried before using Bazley’s special choice. Unfor-
tunately, the bounds of the former are inferior to those of the latter, and thus
if performance is not sufficient then Bazley’s special choice should be tried. For
lower bounds superior to those obtained with Bazley’s special choice, our second
method (exponential special choice) may be helpful. It performed very well for
the perturbed particle in a box giving superior lower bounds to the N−1 lowest
eigenvalues for an N-dimensional matrix eigenvalue problem. For the helium
atom, only the lowest eigenvalue was bounded better. Although we have numeri-
cal evidence for the “goodness” of the two methods we have presented, Bazley’s
special choice is still more desirable in general because it guarantees that with
increasing effort there is no reduction in the quality of the lower bounds.
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